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How can an RL agent generalize across tasks?
How can it explore and adapt in-context (i.e., without gradient updates) in new tasks?

Meta-RL Benchmark: Symbollc Alchemy wangetal, 2021)

kﬂ / Problem (in our modified version):
iy P .
e Each task can be represented as a partial
\“ / A//-\ MDP graph (see cubes to the left).
e Graph edges change across episodes, I.e.,
e’ﬁ ot L’ ° the transition function changes.
o”é 9;0 e Only 200 time steps to explore and adapt
g’ & to a new episode.
Posterior Sampling Framework Our Contributions
(Thompson, 1933; Strens, 2000; Osband et al., 2013)
Sample is a partial MDP graph
A.S, .
A'S | =» Cheap dynamic prog.
Context ' 2 _, Update beliefs _Sample ~— Hypothesis
about MDP about MDP
AS, Posterior update p(graph edges | context)
Is approximated via a transformer and
T training tasks
o e Replace exact Bayesian inference
t+1
- & Offline Transformer Training (ke et al., 2022)
nv
Dynamic programming to Task 1 Task K
A solve for optimal policy
' - Contexts
generated via AS. N
The original posterior sampling procedure is limited because: random policy ((Aw )ST) ((A?'Ii-1’1)s:l'.).
Sample can be a large MDP Update via_ Bayesian inference e
- EXxpensive dynamic prog * Expensive : abe
' e Unknown prior

Results in Held Out Tasks (no gradient updates)
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w— SN, We almost match the adaptation speed, model accuracy, rewards,
IML .{., sggggggmggyg}gafg and exploration behavior of an exact Posterior Sampling oracle.
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i Future: How can we learn partial MDP graphs for other environments?




